Editors' Cuts

The Evolving Arc of Analytics

Bill Kenealy
Insurance Experts' Forum, January 26, 2011

One useful metric for charting the ascendancy of predictive analytic technologies is to survey the financial results of SAS Institute Inc.

In fiscal year 2010, the Cary, N.C.-based firm recorded global revenue of $2.43 billion, up 5.2% over the previous year. In the business analytics category, revenue rose some 26%. The results marked the 35th consecutive year of revenue growth for the company.

Yet numbers alone are insufficient to elucidate just how broad the use of predictive analysis has become. In addition to traditional strongholds such as financial services, the technology is increasingly finding uses in sectors such as retail. A predictive program might help a retailer optimize items for markdown, while another may aid a credit card processor score the purchases in real-time to determine if fraudulent.

Despite the growing ubiquity of analytics, SAS co-founder and CEO Jim Goodnight still sees many new areas where analytics can help businesses solve problems. “Even though insurers and bankers have been at it for a while, I think we’re still at a very early stage,” Goodnight tells Insurance Networking News.

Part of the continuing evolution, Goodnight says it is providing results faster to make them more actionable by the business. In the case of insurers looking to hedge financial risk, having instantaneous analytics results can have major implications by giving insurers a better sense of which market instruments to buy beforehand. “All risk calculations now are done after the fact,” Goodnight says. “We’re working hard to bring assessment of market risk and credit risk down to under an hour. We’re almost to the point where you can do it in real time.”

However, this road to real-time analytics is only feasible in light of concurrent advances in processing power. As the limits of the photolithography and silicon itself have forced chipmakers to forsake higher clock speeds for multi-core designs, software makers were forced to adjust as a result. Goodnight says the company has spent the past seven or eight years optimizing its offerings to run on multi-core hardware. “We had to find ways to rewrite our software to make use of all those cores. That means changing the sequential process we’ve been used to writing as programmers for the past 40 years and now getting things to run in parallel.”

Much as the exponential increase in processing power has introduced both opportunities and challenges, the similar explosion in storage capacity is a double-edged sword. “The problem analytics faces now is that the volumes of data are growing so rapidly,” Goodnight says. “We’re looking at the amount of data in the world doubling annually.” Indeed, in an era when every Internet search is saved and thus potential grist for predictive analysis, separating data with predictive value from the ocean of digital dross is no mean feat. Accordingly, Goodnight says the company is working with its customers to better determine what data to save and what to throw out. “Our biggest long-range problem is how to deal with more data,” he says.

Bill Kenealy is a senior editor with Insurance Networking News.

Readers are encouraged to respond to Bill by using the “Add Your Comments” box below. He can also be reached at william.kenealy@sourcemedia.com.

This blog was exclusively written for Insurance Networking News. It may not be reposted or reused without permission from Insurance Networking News.

The opinions of bloggers on www.insurancenetworking.com do not necessarily reflect those of Insurance Networking News.

Comments (0)

Be the first to comment on this post using the section below.

Add Your Comments...

Already Registered?

If you have already registered to Insurance Networking News, please use the form below to login. When completed you will immeditely be directed to post a comment.

Forgot your password?

Not Registered?

You must be registered to post a comment. Click here to register.

Blog Archive

The Good, The Bad and The Ugly Of Enterprise BI

When IT can't deliver, business users build their own applications focusing on agility, flexibility and reaction times.

The IT-Savvy 10%

IBM survey reveals best practices of IT leaders.

The Software-Defined Health Insurer: Radical But Realistic?

Can a tech startup digitally assemble the pieces of a comprehensive, employer-provided health plan?

Data Governance in Insurance Carriers

As the insurance industry moves into a more data-centric world, data governance becomes more critical for ensuring the data is consistent, reliable and usable for analysis.

Fear This

Just days before this Issue, which contains our security cover story, went to press, we got some interesting news: 1.2 billion unique usernames and passwords and 542 million email addresses were reportedly stolen from 420,000 websites, according to The New York Times. The websites ranged from Fortune 500 companies down to small online retailers.

Should You Back Up Enterprise Data to the Cloud?

Six questions that need to be asked before signing on with an outside service.